Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Elife ; 122024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358795

RESUMO

Many cellular processes are regulated by ubiquitin-mediated proteasomal degradation. Pathogens can regulate eukaryotic proteolysis through the delivery of proteins with de-ubiquitinating (DUB) activities. The obligate intracellular pathogen Chlamydia trachomatis secretes Cdu1 (ChlaDUB1), a dual deubiquitinase and Lys-acetyltransferase, that promotes Golgi remodeling and survival of infected host cells presumably by regulating the ubiquitination of host and bacterial proteins. Here, we determined that Cdu1's acetylase but not its DUB activity is important to protect Cdu1 from ubiquitin-mediated degradation. We further identified three C. trachomatis proteins on the pathogen-containing vacuole (InaC, IpaM, and CTL0480) that required Cdu1's acetylase activity for protection from degradation and determined that Cdu1 and these Cdu1-protected proteins are required for optimal egress of Chlamydia from host cells. These findings highlight a non-canonical mechanism of pathogen-mediated protection of virulence factors from degradation after their delivery into host cells and the coordinated regulation of secreted effector proteins.


Assuntos
Acetilesterase , Membranas Mitocondriais , Chlamydia trachomatis , Proteínas de Bactérias/genética , Ubiquitina
2.
J Bacteriol ; 206(2): e0033423, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38299857

RESUMO

Among the first microorganisms to colonize the human gut of breastfed infants are bacteria capable of fermenting human milk oligosaccharides (HMOs). One of the most abundant HMOs, 2'-fucosyllactose (2'-FL), may specifically drive bacterial colonization of the intestine. Recently, differential growth has been observed across multiple species of Akkermansia on various HMOs including 2'-FL. In culture, we found growth of two species, A. muciniphila MucT and A. biwaensis CSUN-19,on HMOs corresponded to a decrease in the levels of 2'-FL and an increase in lactose, indicating that the first step in 2'-FL catabolism is the cleavage of fucose. Using phylogenetic analysis and transcriptional profiling, we found that the number and expression of fucosidase genes from two glycoside hydrolase (GH) families, GH29 and GH95, vary between these two species. During the mid-log phase of growth, the expression of several GH29 genes was increased by 2'-FL in both species, whereas the GH95 genes were induced only in A. muciniphila. We further show that one putative fucosidase and a ß-galactosidase from A. biwaensis are involved in the breakdown of 2'-FL. Our findings indicate that the plasticity of GHs of human-associated Akkermansia sp. enables access to additional growth substrates present in HMOs, including 2'-FL. Our work highlights the potential for Akkermansia to influence the development of the gut microbiota early in life and expands the known metabolic capabilities of this important human symbiont.IMPORTANCEAkkermansia are mucin-degrading specialists widely distributed in the human population. Akkermansia biwaensis has recently been observed to have enhanced growth relative to other human-associated Akkermansia on multiple human milk oligosaccharides (HMOs). However, the mechanisms for enhanced growth are not understood. Here, we characterized the phylogenetic diversity and function of select genes involved in the growth of A. biwaensis on 2'-fucosyllactose (2'-FL), a dominant HMO. Specifically, we demonstrate that two genes in a genomic locus, a putative ß-galactosidase and α-fucosidase, are likely responsible for the enhanced growth on 2'-FL. The functional characterization of A. biwaensis growth on 2'-FL delineates the significance of a single genomic locus that may facilitate enhanced colonization and functional activity of select Akkermansia early in life.


Assuntos
Akkermansia , Trissacarídeos , alfa-L-Fucosidase , Lactente , Humanos , Akkermansia/metabolismo , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo , Filogenia , Oligossacarídeos/metabolismo , beta-Galactosidase/genética
3.
bioRxiv ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37904935

RESUMO

Among the first microorganisms to colonize the human gut of breastfed infants are bacteria capable of fermenting human milk oligosaccharides (HMOs). One of the most abundant HMOs, 2'-fucosyllactose (2'-FL), may specifically drive bacterial colonization of the intestine. Recently, differential growth has been observed across multiple species of Akkermansia on various HMOs including 2'FL. In culture, we found growth of two species, A. muciniphila Muc T and A. biwaensis CSUN-19, in HMOS corresponded to a decrease in the levels of 2'-FL and an increase in lactose, indicating that the first step in 2'-FL catabolism is the cleavage of fucose. Using phylogenetic analysis and transcriptional profiling, we found that the number and expression of fucosidase genes from two glycoside hydrolase (GH) families, GH29 and GH95, varies between these two species. During mid-log phase growth, the expression of several GH29 genes was increased by 2'-FL in both species, whereas the GH95 genes were induced only in A. muciniphila . We further show that one putative fucosidase and a ß-galactosidase from A. biwaensis are involved in the breakdown of 2'-FL. Our findings indicate that that plasticity of GHs of human associated Akkermansia sp. enable access to additional growth substrates present in HMOs, including 2'-FL. Our work highlights the potential for Akkermansia to influence the development of the gut microbiota early in life and expands the known metabolic capabilities of this important human symbiont. IMPORTANCE: Akkermansia are mucin degrading specialists widely distributed in the human population. Akkermansia biwaensis has recently been observed to have enhanced growth relative to other human associated Akkermansia on multiple human milk oligosaccharides (HMOs). However, the mechanisms for enhanced growth are not understood. Here, we characterized the phylogenetic diversity and function of select genes involved in growth of A. biwaensis on 2'-fucosyllactose (2'-FL), a dominant HMO. Specifically, we demonstrate that two genes in a genomic locus, a putative ß-galactosidase and α-fucosidase, are likely responsible for the enhanced growth on 2'-FL. The functional characterization of A. biwaensis growth on 2'-FL delineates the significance of a single genomic locus that may facilitate enhanced colonization and functional activity of select Akkermansia early in life.

4.
mBio ; 14(4): e0319022, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37530528

RESUMO

The obligate intracellular bacterium Chlamydia trachomatis inserts a family of inclusion membrane (Inc) proteins into the membrane of its vacuole (the inclusion). The Inc CpoS is a critical suppressor of host cellular immune surveillance, but the underlying mechanism remained elusive. By complementing a cpoS mutant with various natural orthologs and variants of CpoS, we linked distinct molecular interactions of CpoS to distinct functions. Unexpectedly, we found CpoS to be essential for the formation of inclusion membrane microdomains that control the spatial organization of multiple Incs involved in signaling and modulation of the host cellular cytoskeleton. While the function of CpoS in microdomains was uncoupled from its role in the suppression of host cellular defenses, we found the ability of CpoS to interact with Rab GTPases to be required not only for the manipulation of membrane trafficking, such as to mediate transport of ceramide-derived lipids (sphingolipids) to the inclusion, but also for the inhibition of Stimulator of interferon genes (STING)-dependent type I interferon responses. Indeed, depletion of Rab35 phenocopied the exacerbated interferon responses observed during infection with CpoS-deficient mutants. Overall, our findings highlight the role of Inc-Inc interactions in shaping the inclusion microenvironment and the modulation of membrane trafficking as a pathogenic immune evasion strategy. IMPORTANCE Chlamydia trachomatis is a prevalent bacterial pathogen that causes blinding ocular scarring and urogenital infections that can lead to infertility and pregnancy complications. Because Chlamydia can only grow within its host cell, boosting the intrinsic defenses of human cells may represent a novel strategy to fight pathogen replication and survival. Hence, CpoS, a Chlamydia protein known to block host cellular defenses, or processes regulated by CpoS, could provide new opportunities for therapeutic intervention. By revealing CpoS as a multifunctional virulence factor and by linking its ability to block host cellular immune signaling to the modulation of membrane trafficking, the present work may provide a foundation for such rationale targeting and advances our understanding of how intracellular bacteria can shape and protect their growth niche.


Assuntos
Infecções por Chlamydia , Interferon Tipo I , Humanos , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/genética , Infecções por Chlamydia/microbiologia , Evasão da Resposta Imune , Interferon Tipo I/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno
5.
mBio ; 14(4): e0150423, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37526424

RESUMO

The inflammatory bowel diseases (IBD) occur in genetically susceptible individuals who mount inappropriate immune responses to their microbiota leading to chronic intestinal inflammation. Whereas IBD clinical presentation is well described, how interactions between microbiota and host genotype impact early subclinical stages of the disease remains unclear. The transcription factor hepatocyte nuclear factor 4 alpha (HNF4A) has been associated with human IBD, and deletion of Hnf4a in intestinal epithelial cells (IECs) in mice (Hnf4aΔIEC) leads to spontaneous colonic inflammation by 6-12 mo of age. Here, we tested if pathology in Hnf4aΔIEC mice begins earlier in life and if microbiota contribute to that process. Longitudinal analysis revealed that Hnf4aΔIEC mice reared in specific pathogen-free (SPF) conditions develop episodic elevated fecal lipocalin 2 (Lcn2) and loose stools beginning by 4-5 wk of age. Lifetime cumulative Lcn2 levels correlated with histopathological features of colitis at 12 mo. Antibiotic and gnotobiotic tests showed that these phenotypes in Hnf4aΔIEC mice were dependent on microbiota. Fecal 16S rRNA gene sequencing in SPF Hnf4aΔIEC and control mice disclosed that genotype significantly contributed to differences in microbiota composition by 12 mo, and longitudinal analysis of the Hnf4aΔIEC mice with the highest lifetime cumulative Lcn2 revealed that microbial community differences emerged early in life when elevated fecal Lcn2 was first detected. These microbiota differences included enrichment of a novel phylogroup of Akkermansia muciniphila in Hnf4aΔIEC mice. We conclude that HNF4A functions in IEC to shape composition of the gut microbiota and protect against episodic inflammation induced by microbiota throughout the lifespan. IMPORTANCE The inflammatory bowel diseases (IBD), characterized by chronic inflammation of the intestine, affect millions of people around the world. Although significant advances have been made in the clinical management of IBD, the early subclinical stages of IBD are not well defined and are difficult to study in humans. This work explores the subclinical stages of disease in mice lacking the IBD-associated transcription factor HNF4A in the intestinal epithelium. Whereas these mice do not develop overt disease until late in adulthood, we find that they display episodic intestinal inflammation, loose stools, and microbiota changes beginning in very early life stages. Using germ-free and antibiotic-treatment experiments, we reveal that intestinal inflammation in these mice was dependent on the presence of microbiota. These results suggest that interactions between host genotype and microbiota can drive early subclinical pathologies that precede the overt onset of IBD and describe a mouse model to explore those important processes.


Assuntos
Colite , Fator 4 Nuclear de Hepatócito , Doenças Inflamatórias Intestinais , Microbiota , Animais , Humanos , Camundongos , Antibacterianos , Colite/induzido quimicamente , Fator 4 Nuclear de Hepatócito/genética , Inflamação/patologia , Doenças Inflamatórias Intestinais/genética , Intestinos , RNA Ribossômico 16S/genética
6.
New Microbes New Infect ; 54: 101158, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37416863

RESUMO

The International Committee on Systematics of Prokaryotes (ICSP) discussed and rejected in 2020 a proposal to modify the International Code of Nomenclature of Prokaryotes to allow the use of gene sequences as type for naming prokaryotes. An alternative nomenclatural code, the Code of Nomenclature of Prokaryotes Described from Sequence Data (SeqCode), which considers genome sequences as type material for naming species, was published in 2022. Members of the ICSP subcommittee for the taxonomy of the phylum Chlamydiae (Chlamydiota) consider that the use of gene sequences as type would benefit the taxonomy of microorganisms that are difficult to culture such as the chlamydiae and other strictly intracellular bacteria. We recommend the registration of new names of uncultured prokaryotes in the SeqCode registry.

7.
Nat Microbiol ; 8(8): 1450-1467, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37337046

RESUMO

Akkermansia muciniphila, a mucophilic member of the gut microbiota, protects its host against metabolic disorders. Because it is genetically intractable, the mechanisms underlying mucin metabolism, gut colonization and its impact on host physiology are not well understood. Here we developed and applied transposon mutagenesis to identify genes important for intestinal colonization and for the use of mucin. An analysis of transposon mutants indicated that de novo biosynthesis of amino acids was required for A. muciniphila growth on mucin medium and that many glycoside hydrolases are redundant. We observed that mucin degradation products accumulate in internal compartments within bacteria in a process that requires genes encoding pili and a periplasmic protein complex, which we term mucin utilization locus (MUL) genes. We determined that MUL genes were required for intestinal colonization in mice but only when competing with other microbes. In germ-free mice, MUL genes were required for A. muciniphila to repress genes important for cholesterol biosynthesis in the colon. Our genetic system for A. muciniphila provides an important tool with which to uncover molecular links between the metabolism of mucins, regulation of lipid homeostasis and potential probiotic activities.


Assuntos
Intestinos , Mucinas , Verrucomicrobia , Animais , Camundongos , Mucinas/metabolismo , Esteróis/biossíntese , Verrucomicrobia/genética , Verrucomicrobia/crescimento & desenvolvimento , Verrucomicrobia/metabolismo , Intestinos/microbiologia , Organismos Livres de Patógenos Específicos , Elementos de DNA Transponíveis/genética , Mutagênese , Interações entre Hospedeiro e Microrganismos/genética , Espaço Intracelular/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transcrição Gênica
8.
Curr Opin Microbiol ; 74: 102330, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37247566

RESUMO

Chlamydia trachomatis (Ct) is an intracellular bacterial pathogen that relies on the activity of secreted proteins known as effectors to promote replication and avoidance of immune clearance. Understanding the contribution of Ct effectors to pathogenesis has proven to be challenging, given that these proteins often perform multiple functions during intracellular infection. Recent advances in molecular genetic analysis of Ct have provided valuable insights into the multifaceted nature of secreted effector proteins and their impact on the interaction between Ct and host cells and tissues. This review highlights significant findings from genetic analysis of Ct effector functions, shedding light on their diverse roles. We also discuss the challenges faced in this field of study and explore potential opportunities for further research.


Assuntos
Proteínas de Bactérias , Chlamydia trachomatis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/genética , Biologia Molecular , Interações Hospedeiro-Patógeno/genética
9.
bioRxiv ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36909574

RESUMO

Many cellular processes are regulated by ubiquitin-mediated proteasomal degradation. Pathogens can regulate eukaryotic proteolysis through the delivery of proteins with de-ubiquitinating (DUB) activities. The obligate intracellular pathogen Chlamydia trachomatis secretes Cdu1 (ChlaDUB1), a dual deubiquitinase and Lys-acetyltransferase, that promotes Golgi remodeling and survival of infected host cells presumably by regulating the ubiquitination of host and bacterial proteins. Here we determined that Cdu1's acetylase but not its DUB activity is important to protect Cdu1 from ubiquitin-mediated degradation. We further identified three C. trachomatis proteins on the pathogen-containing vacuole (InaC, IpaM, and CTL0480) that required Cdu1's acetylase activity for protection from degradation and determined that Cdu1 and these Cdu1-protected proteins are required for optimal egress of Chlamydia from host cells. These findings highlight a non-canonical mechanism of pathogen-mediated protection of virulence factors from degradation after their delivery into host cells and the coordinated regulation of secreted effector proteins.

10.
Cell Host Microbe ; 30(12): 1685-1700.e10, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36395759

RESUMO

Invasive microbial pathogens often disrupt epithelial barriers, yet the mechanisms used to dismantle tight junctions are poorly understood. Here, we show that the obligate pathogen Chlamydia trachomatis uses the effector protein TepP to transiently disassemble tight junctions early during infection. TepP alters the tyrosine phosphorylation status of host proteins involved in cytoskeletal regulation, including the filamentous actin-binding protein EPS8. We determined that TepP and EPS8 are necessary and sufficient to remodel tight junctions and that the ensuing disruption of epithelial barrier function promotes secondary invasion events. The genetic deletion of EPS8 renders epithelial cells and endometrial organoids resistant to TepP-mediated tight junction remodeling. Finally, TepP and EPS8 promote infection in murine models of infections, with TepP mutants displaying defects in ascension to the upper genital tract. These findings reveal a non-canonical function of EPS8 in the disassembly of epithelial junctions and an important role for Chlamydia pathogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Infecções por Chlamydia , Proteínas dos Microfilamentos , Junções Íntimas , Animais , Camundongos , Chlamydia trachomatis , Células Epiteliais/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Junções Íntimas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Infecções por Chlamydia/metabolismo , Interações Hospedeiro-Patógeno
11.
Sci Transl Med ; 14(671): eabo3445, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36383683

RESUMO

Not all patients with cancer and severe neutropenia develop fever, and the fecal microbiome may play a role. In a single-center study of patients undergoing hematopoietic cell transplant (n = 119), the fecal microbiome was characterized at onset of severe neutropenia. A total of 63 patients (53%) developed a subsequent fever, and their fecal microbiome displayed increased relative abundances of Akkermansia muciniphila, a species of mucin-degrading bacteria (P = 0.006, corrected for multiple comparisons). Two therapies that induce neutropenia, irradiation and melphalan, similarly expanded A. muciniphila and additionally thinned the colonic mucus layer in mice. Caloric restriction of unirradiated mice also expanded A. muciniphila and thinned the colonic mucus layer. Antibiotic treatment to eradicate A. muciniphila before caloric restriction preserved colonic mucus, whereas A. muciniphila reintroduction restored mucus thinning. Caloric restriction of unirradiated mice raised colonic luminal pH and reduced acetate, propionate, and butyrate. Culturing A. muciniphila in vitro with propionate reduced utilization of mucin as well as of fucose. Treating irradiated mice with an antibiotic targeting A. muciniphila or propionate preserved the mucus layer, suppressed translocation of flagellin, reduced inflammatory cytokines in the colon, and improved thermoregulation. These results suggest that diet, metabolites, and colonic mucus link the microbiome to neutropenic fever and may guide future microbiome-based preventive strategies.


Assuntos
Microbioma Gastrointestinal , Transplante de Células-Tronco Hematopoéticas , Neoplasias , Neutropenia , Camundongos , Animais , Propionatos , Verrucomicrobia , Muco/metabolismo , Mucinas/metabolismo , Dieta , Neutropenia/metabolismo , Neoplasias/metabolismo
12.
Cell Host Microbe ; 30(12): 1671-1684.e9, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36084633

RESUMO

Chlamydia trachomatis is the leading cause of sexually transmitted bacterial infections and a major threat to women's reproductive health in particular. This obligate intracellular pathogen resides and replicates within a cellular compartment termed an inclusion, where it is sheltered by unknown mechanisms from gamma-interferon (IFNγ)-induced cell-autonomous host immunity. Through a genetic screen, we uncovered the Chlamydia inclusion membrane protein gamma resistance determinant (GarD) as a bacterial factor protecting inclusions from cell-autonomous immunity. In IFNγ-primed human cells, inclusions formed by garD loss-of-function mutants become decorated with linear ubiquitin and are eliminated. Leveraging cellular genome-wide association data, we identified the ubiquitin E3 ligase RNF213 as a candidate anti-Chlamydia protein. We demonstrate that IFNγ-inducible RNF213 facilitates the ubiquitylation and destruction of GarD-deficient inclusions. Furthermore, we show that GarD operates as a cis-acting stealth factor barring RNF213 from targeting inclusions, thus functionally defining GarD as an RNF213 antagonist essential for chlamydial growth during IFNγ-stimulated immunity.


Assuntos
Infecções Bacterianas , Infecções por Chlamydia , Feminino , Humanos , Chlamydia trachomatis/genética , Estudo de Associação Genômica Ampla , Infecções por Chlamydia/metabolismo , Ubiquitinação , Interferon gama/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Células HeLa , Adenosina Trifosfatases/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
Cell ; 185(20): 3705-3719.e14, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36179667

RESUMO

The intestinal microbiota is an important modulator of graft-versus-host disease (GVHD), which often complicates allogeneic hematopoietic stem cell transplantation (allo-HSCT). Broad-spectrum antibiotics such as carbapenems increase the risk for intestinal GVHD, but mechanisms are not well understood. In this study, we found that treatment with meropenem, a commonly used carbapenem, aggravates colonic GVHD in mice via the expansion of Bacteroides thetaiotaomicron (BT). BT has a broad ability to degrade dietary polysaccharides and host mucin glycans. BT in meropenem-treated allogeneic mice demonstrated upregulated expression of enzymes involved in the degradation of mucin glycans. These mice also had thinning of the colonic mucus layer and decreased levels of xylose in colonic luminal contents. Interestingly, oral xylose supplementation significantly prevented thinning of the colonic mucus layer in meropenem-treated mice. Specific nutritional supplementation strategies, including xylose supplementation, may combat antibiotic-mediated microbiome injury to reduce the risk for intestinal GVHD in allo-HSCT patients.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteroides , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/etiologia , Meropeném , Camundongos , Mucinas/metabolismo , Muco/metabolismo , Polissacarídeos/metabolismo , Xilose
14.
HGG Adv ; 3(1): 100071, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35047856

RESUMO

Human genetic diversity can have profound effects on health outcomes upon exposure to infectious agents. For infections with Chlamydia trachomatis (C. trachomatis), the wide range of genital and ocular disease manifestations are likely influenced by human genetic differences that regulate interactions between C. trachomatis and host cells. We leveraged this diversity in cellular responses to demonstrate the importance of variation at the Toll-like receptor 1 (TLR1), TLR6, and TLR10 locus to cytokine production in response to C. trachomatis. We determined that a single-nucleotide polymorphism (SNP) (rs1057807), located in a region that forms a loop with the TLR6 promoter, is associated with increased expression of TLR1, TLR6, and TLR10 and secreted levels of ten C. trachomatis-induced cytokines. Production of these C. trachomatis-induced cytokines is primarily dependent on MyD88 and TLR6 based on experiments using inhibitors, blocking antibodies, RNAi, and protein overexpression. Population genetic analyses further demonstrated that the mean IL-6 response of cells from two European populations were higher than the mean response of cells from three African populations and that this difference was partially attributable to variation in rs1057807 allele frequency. In contrast, a SNP associated with a different pro-inflammatory cytokine (rs2869462 associated with the chemokine CXCL10) exhibited an opposite response, underscoring the complexity of how different genetic variants contribute to an individual's immune response. This multidisciplinary study has identified a long-range chromatin interaction and genetic variation that regulates TLR6 to broaden our understanding of how human genetic variation affects the C. trachomatis-induced immune response.

15.
mBio ; 12(3)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006653

RESUMO

The mucophilic anaerobic bacterium Akkermansia muciniphila is a prominent member of the gastrointestinal (GI) microbiota and the only known species of the Verrucomicrobia phylum in the mammalian gut. A high prevalence of A. muciniphila in adult humans is associated with leanness and a lower risk for the development of obesity and diabetes. Four distinct A. muciniphila phylogenetic groups have been described, but little is known about their relative abundance in humans or how they impact human metabolic health. In this study, we isolated and characterized 71 new A. muciniphila strains from a cohort of children and adolescents undergoing treatment for obesity. Based on genomic and phenotypic analysis of these strains, we found several phylogroup-specific phenotypes that may impact the colonization of the GI tract or modulate host functions, such as oxygen tolerance, adherence to epithelial cells, iron and sulfur metabolism, and bacterial aggregation. In antibiotic-treated mice, phylogroups AmIV and AmII outcompeted AmI strains. In children and adolescents, AmI strains were most prominent, but we observed high variance in A. muciniphila abundance and single phylogroup dominance, with phylogroup switching occurring in a small subset of patients. Overall, these results highlight that the ecological principles determining which A. muciniphila phylogroup predominates in humans are complex and that A. muciniphila strain genetic and phenotypic diversity may represent an important variable that should be taken into account when making inferences as to this microbe's impact on its host's health.IMPORTANCE The abundance of Akkermansia muciniphila in the gastrointestinal (GI) tract is linked to multiple positive health outcomes. There are four known A. muciniphila phylogroups, yet the prevalence of these phylogroups and how they vary in their ability to influence human health is largely unknown. In this study, we performed a genomic and phenotypic analysis of 71 A. muciniphila strains and identified phylogroup-specific traits such as oxygen tolerance, adherence, and sulfur acquisition that likely influence colonization of the GI tract and differentially impact metabolic and immunological health. In humans, we observed that single Akkermansia phylogroups predominate at a given time but that the phylotype can switch in an individual. This collection of strains provides the foundation for the functional characterization of A. muciniphila phylogroup-specific effects on the multitude of host outcomes associated with Akkermansia colonization, including protection from obesity, diabetes, colitis, and neurological diseases, as well as enhanced responses to cancer immunotherapies.


Assuntos
Variação Genética , Genótipo , Fenótipo , Akkermansia/classificação , Akkermansia/genética , Akkermansia/isolamento & purificação , Animais , Estudos de Coortes , Feminino , Microbioma Gastrointestinal , Células HT29 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
J Bacteriol ; 203(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33685970

RESUMO

Chlamydia pneumoniae is a Gram-negative, obligate intracellular pathogen that causes community-acquired respiratory infections. C. pneumoniae uses a cell contact-dependent type-III secretion (T3S) system to translocate pathogen effector proteins that manipulate host cellular functions. While several C. pneumoniae T3S effectors have been proposed, few have been experimentally confirmed in Chlamydia In this study, we expressed 382 C. pneumoniae genes in C. trachomatis as fusion proteins to an epitope tag derived from glycogen synthase kinase 3ß (GSK3ß) which is the target of phosphorylation by mammalian kinases. Based on the detection of the tagged C. pneumoniae protein with anti-phospho GSK3ß antibodies, we identified 49 novel C. pneumoniae-specific proteins that are translocated by C. trachomatis into the host cytoplasm and thus likely play a role as modifiers of host cellular functions. In this manner, we identified and characterized a new C. pneumoniae effector CPj0678 that recruits the host cell protein PACSIN2 to the plasma membrane. These findings indicate that C. trachomatis provides a powerful screening system to detect candidate effector proteins encoded by other pathogenic and endosymbiotic Chlamydia species.Importance Chlamydia injects numerous effector proteins into host cells to manipulate cellular functions important for bacterial survival. Based on findings in C. trachomatis, it has been proposed that between 5-10% of the C. pneumoniae genome, a related respiratory pathogen, encodes secreted effectors. However only a few C. pneumoniae effectors have been identified and experimentally validated. With the development of methods for the stable genetic transformation of C. trachomatis, it is now possible to use C. trachomatis shuttle plasmids to express and explore the function of proteins from other Chlamydia in a more relevant bacterial system. In this study, we experimentally determined that 49 C. pneumoniae-specific proteins are translocated into the host cytoplasm by Chlamydia secretion systems, and identify a novel effector required to recruit the host factor PACSIN2 to the plasma membrane during infection.

17.
Obesity (Silver Spring) ; 29(3): 569-578, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33624438

RESUMO

OBJECTIVE: The purpose of this study was to establish a biorepository of clinical, metabolomic, and microbiome samples from adolescents with obesity as they undergo lifestyle modification. METHODS: A total of 223 adolescents aged 10 to 18 years with BMI ≥95th percentile were enrolled, along with 71 healthy weight participants. Clinical data, fasting serum, and fecal samples were collected at repeated intervals over 6 months. Herein, the study design, data collection methods, and interim analysis-including targeted serum metabolite measurements and fecal 16S ribosomal RNA gene amplicon sequencing among adolescents with obesity (n = 27) and healthy weight controls (n = 27)-are presented. RESULTS: Adolescents with obesity have higher serum alanine aminotransferase, C-reactive protein, and glycated hemoglobin, and they have lower high-density lipoprotein cholesterol when compared with healthy weight controls. Metabolomics revealed differences in branched-chain amino acid-related metabolites. Also observed was a differential abundance of specific microbial taxa and lower species diversity among adolescents with obesity when compared with the healthy weight group. CONCLUSIONS: The Pediatric Metabolism and Microbiome Study (POMMS) biorepository is available as a shared resource. Early findings suggest evidence of a metabolic signature of obesity unique to adolescents, along with confirmation of previously reported findings that describe metabolic and microbiome markers of obesity.


Assuntos
Obesidade Pediátrica/metabolismo , Obesidade Pediátrica/microbiologia , Adolescente , Peso Corporal/fisiologia , Estudos de Casos e Controles , Criança , Jejum , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Humanos , Masculino , Metabolômica/métodos , Dados Preliminares , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética
18.
J Cell Sci ; 134(5)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33468625

RESUMO

Our understanding of how the obligate intracellular bacterial pathogen Chlamydia trachomatis reprograms the function of infected cells in the upper genital tract is largely based on observations made in cell culture with transformed epithelial cell lines. Here, we describe a primary organoid system derived from endometrial tissue to recapitulate epithelial cell diversity, polarity and ensuing responses to Chlamydia infection. Using high-resolution and time-lapse microscopy, we catalog the infection process in organoids from invasion to egress, including the reorganization of the cytoskeleton and positioning of intracellular organelles. We show this model is amenable to screening C. trachomatis mutants for defects in the fusion of pathogenic vacuoles, the recruitment of intracellular organelles and inhibition of cell death. Moreover, we reconstructed a primary immune cell response by co-culturing infected organoids with neutrophils, and determined that effectors like CPAF (also known as CT858) and TepP (also known as CT875) limit the recruitment of neutrophils to infected organoids. Collectively, our model can be applied to study the cell biology of Chlamydia infections in three-dimensional structures that better reflect the diversity of cell types and polarity encountered by Chlamydia in their animal hosts.


Assuntos
Infecções por Chlamydia , Organoides , Animais , Chlamydia trachomatis , Endométrio , Células Epiteliais , Feminino
19.
Sci Rep ; 10(1): 18269, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106516

RESUMO

Susceptibility to infectious diseases is determined by a complex interaction between host and pathogen. For infections with the obligate intracellular bacterium Chlamydia trachomatis, variation in immune activation and disease presentation are regulated by both host genetic diversity and pathogen immune evasion. Previously, we discovered a single nucleotide polymorphism (rs2869462) associated with absolute abundance of CXCL10, a pro-inflammatory T-cell chemokine. Here, we report that levels of CXCL10 change during C. trachomatis infection of cultured cells in a manner dependent on both host and pathogen. Linear modeling of cellular traits associated with CXCL10 levels identified a strong, negative correlation with bacterial burden, suggesting that C. trachomatis actively suppresses CXCL10. We identified the pathogen-encoded factor responsible for this suppression as the chlamydial protease- or proteasome-like activity factor, CPAF. Further, we applied our modeling approach to other host cytokines in response to C. trachomatis and found evidence that RANTES, another T-cell chemoattractant, is actively suppressed by Chlamydia. However, this observed suppression of RANTES is not mediated by CPAF. Overall, our results demonstrate that CPAF suppresses CXCL10 to evade the host cytokine response and that modeling of cellular infection parameters can reveal previously unrecognized facets of host-pathogen interactions.


Assuntos
Quimiocina CXCL10/genética , Infecções por Chlamydia/genética , Chlamydia trachomatis/enzimologia , Endopeptidases/metabolismo , Polimorfismo de Nucleotídeo Único , Animais , Linhagem Celular , Quimiocina CCL5/metabolismo , Quimiocina CXCL10/metabolismo , Infecções por Chlamydia/metabolismo , Chlamydia trachomatis/genética , Chlorocebus aethiops , Células HeLa , Humanos , Modelos Biológicos , Células Vero
20.
Curr Opin Microbiol ; 54: 59-66, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32044689

RESUMO

When Stanley Falkow introduced Molecular Koch's Postulates (Falkow, 1988) as a conceptual framework to identify microbial factors that contributed to disease, he reaffirmed the prominent role that the basic principles of genetic analysis should play in defining genotype-phenotype associations in microbial pathogens. In classical bacterial genetics the nature of mutations is inferred through cis-trans complementation and by indirectly mapping their relative position and physical distance through recombination frequencies - all of which were made possible by the genetic tools of the day: natural transformations, conjugation and transduction. Unfortunately, many of these genetic tools are not always available to study pathogenic bacteria. The recombinant DNA revolution in the 1980s launched the field of molecular pathogenesis as genes could be treated as physical units that could be cut, spliced and transplanted from one microbe to another and thus not only 'prove' that an individual gene complemented a virulence defect in a mutant strain but also could impart pathogenic properties to otherwise benign microbes. The recombinant DNA revolution also enabled the generation of newer versions of genetic tools to generate mutations and engineer microbial genomes. The last decade has ushered in next generation sequencing technologies as a new powerful tool for bacterial genetics. The routine and inexpensive sequencing of microbial genomes has increased the number and phylogenetic scope of microbes that are amenable to functional characterization and experimentation. In this review, we highlight some salient advances in this rapidly evolving area.


Assuntos
Bactérias/genética , Bactérias/patogenicidade , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Elementos de DNA Transponíveis , DNA Bacteriano/genética , Epigênese Genética , Perfilação da Expressão Gênica , Interações entre Hospedeiro e Microrganismos , Interações Hospedeiro-Patógeno , Mutagênese , RNA-Seq , Virulência/genética , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...